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Solitons in cell membranes
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Using a two-dimensional smectic liquid crystal model, we have shown the plausibility of electrical soli-
tary wave propagation along a bimolecular leaflet such as the cell membrane of a nerve axon which con-
sists of chiral, lipid building blocks. Our model is a head-to-tail correlated ferroelectric, chiral Sm-C *
liquid crystal, which is a unique class of substances that combines the electric polarization and anisotro-
py of ferroelectric crystals with the hydrodynamic properties of liquids. Polar Sm- A models can also be
used with the same results. In addition to the usual transverse ferroelectricity, characteristic of the Sm-
C* liquid crystal, the head-to-tail correlation ensures a longitudinal ferroelectricity component. The
electric polarization due to the latter can couple to the transmembrane electric field resulting from the
ionic imbalance between the two sides of the membrane—a mechanism detailed in the so-called
Hodgkin-Huxley set of partial differential equations for the propagation of the action potential. We ob-
tain a Landau—de Gennes-like free energy, which is the sum of elastic, fluctuation, and polarization
terms, together with a ferroelectric term showing a direct coupling between the electric field and the
mechanical deformation variable. Minimizing and equating to a viscous damping term leads to an equa-
tion similar to one equation of the Fitzhugh-Nagumo coupled set of partial differential equations, which
is a simplified version of the Hodgkin-Huxley equations. The other equation of the set resembles an
equation derived from the Nernst-Planck equation, which describes transmembrane ion transport and
hence provides a mechanism for transmembrane potential variation. A more complete calculation of the
velocity of the asymptotic wave form shows a lower wave speed than the estimate of Nagumo et al. The
piezoelectric properties of the phase compete with its curvature elasticity to produce the soliton lattice
of the cell membrane, which consists of juxtaposed regions of opposite tilt orientations. The propagation
of the solitary wave requires a switching electric field, which is the form for the action potential and

APRIL 1995

Institute for Biophysical Research on Macromolecular Assemblies, The Johns Hopkins University, Baltimore, Maryland 21218

which moves the polarized domains by ferroelectric switching.

PACS number(s): 87.22.—q, 61.30.Cz, 77.80.Fm

I. INTRODUCTION

The nerve axon membrane has been thoroughly studied
since the seminal work of Hodgkin and Huxley [1], who
hypothesized that the dependence of sodium and potassi-
um conductances on the membrane potential could arise
from the effect of the electric field on the distribution or
orientation of molecules with a charge or dipole moment.
The structure of the membrane generally accepted at
present is due to Singer and Nicolson [2]. This fluid mo-
saic model of the cell membrane is a two-dimensional
(2D) smectic liquid crystal composed of a phospholipid
bilayer. Imbedded in this bimolecular leaflet are small
patches of transport proteins which allow the transmis-
sion of ions [2,3].

The propagation of action potentials in cell mem-
branes, muscle, retinal photoreceptors, and myelin are
well known. All of these organized systems possess a
lamellar or smectic structure. Cladis and Van Saarloos
[4] attribute ferroelectric properties to these structures,
arising out of the occurrence of chiral building blocks.

Because of the variety of possible short- and long-range
ordering, thermotropic smectic liquid crystals have a
great diversity of forms [5]. The Sm-A4 phase is uniaxial
and possesses the orientational order of the nematics plus
a 1D mass density modulation which is in the same direc-
tion as the “nematic” director. The Sm-C phase is biaxial
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and is characterized by the noncoincidence of the nemat-
ic director with the density modulation. The difference
between the Sm-C and Sm- 4 phases is the angle of tilt of
the molecules in the former (see Fig. 1). Both Sm-4 and
Sm-C phases have “liquid” layers, i.e., there is no posi-
tional correlation among the molecules in any single lay-
er, just as in a liquid. Other smectic phases have “solid”
layers and are more difficult to characterize. We exclude
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FIG. 1. Sketch of the ferroelectric liquid crystal geometry.
The smectic-C* phase has layering along the z direction. The
molecular director n is tilted from the layer normal by an angle
6 and the spontaneous polarization p; is along the direction
defined by i, Xn. c represents the ¢ director, which lies in the
smectic plane and is perpendicular to p;.
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them from further discussion and restrict ourselves to the
liquid layer smectics. Also, we note that many of the
characteristics of the thermotropics are displayed by the
lyotropics.

Under the resting condition, the cylindrical nerve axon
maintains a constant potential difference across its sur-
face membrane. If a stimulus in the form of a brief out-
ward current pulse of millisecond duration is applied
through a stimulating electrode touching the membrane,
the resulting potential change depends on the stimulus.
A stimulus below a threshold level causes a membrane
potential change, which is below ~10 mV, and decays
fast. With the application of a transthreshold stimulus,
the recorded potential curve increases abruptly in ampli-
tude to form the triangular, ~100-mV-high (about 1-2
ms duration), wave form called an action potential. This
electric pulse signal is transmitted along an unmyelinated
animal nerve axon at constant conduction velocity with
neither attenuation nor distortion, regardless of the dis-
tance traveled. The signal is characterized by an asymp-
totic value of the height (~0.1 V) and width (~2 ms).
Any initial disturbance imparted to the excitable nerve
membrane can be (i) attenuated, if the signal height is
above the asymptotic value; (ii) amplified, if the signal
height is below the asymptotic value but above a certain
threshold value; and (iii) eliminated, if the signal height is
below the threshold value [6,7].

The set of partial differential equations developed by
Hodgkin and Huxley to describe the propagation of the
action potential was examined by Fitzhugh [6] and
Nagumo, Arimoto, and Yoshizawa [7]. The latter au-
thors showed that the propagation of asymptotic wave
forms is described by a coupled set of differential equa-
tions. Wang [8] considered field-induced, mechanical sol-
itary waves in nematic liquid crystals and showed their
relationship to a simple case of the Fitzhugh-Nagumo
(FN) coupled set of equations. Using a 2D smectic liquid
crystal model, Chao and White [9] predicted the ex-
istence of mechanical solitons (orientational waves) in the
cell membranes under a transmembrane electric field.
They were motivated by the prediction of Fergason and
Brown [10] that a variety of solitons, e.g., splay-bend
waves, can propagate along the 2D smectic liquid crystal-
line plasma membranes of cells and through the
cytoskeletonal fluid, which is a nematic liquid crystal,
thereby acting as a method of information transfer. Zhu
[11] was also motivated by the Fergason-Brown predic-
tion and experimentally demonstrated that mechanical
solitons can propagate in nematics under shear and es-
timated the speed of their propagation.

The fundamental question that we are addressing here
is whether these propagating action potentials are indeed
electrical solitons or not. We show that equations similar
to the FN coupled set is derivable from the ferroelectric
smectic liquid crystal model of the cell membrane and
that the solitary wave is the result of ferroelectric liquid
crystal switching plus the cable variation of the electric
field. We derive an expression for the conduction veloci-
ty in terms of the mechanical (e.g., anisotropic elastic
constants and viscometric coefficients) and electrical (e.g.,
membrane capacity) constants of the material constitut-
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ing the membrane, molecular parameters such as mem-
brane thickness, and macroscopic parameters such as
axon radius.

II. ELECTRIC POLARIZATION

IN BIOLOGICAL MEMBRANES

Lipid extracts from a variety of cell membranes exhibit
strong thermal behavior at ambient temperatures as evi-
denced by the observation of the undulations of the sur-
face [12]. However, thermally induced phase changes are
not usually important in biological systems since most
living organisms function at a fairly constant tempera-
ture. Still, phase changes can be induced by alterations in
chemical composition of the membrane as well as by cer-
tain environmental variations, such as changes in pH,
ionic strength, and the electric field across a membrane
[13].

Keeping in mind the liquid crystal analogy of the cell
membrane, one would naturally look for the source of
spontaneous electric polarization, which can couple to
the electric field and result in rapid wave propagation.
Fast-traveling, electrically induced solitons are known in
ferroelectric Sm-C* phases [14]. In a tilted smectic phase
such as Sm-C*, which is built of chiral building blocks,
the dipoles add up to give a spontaneous electric polar-
ization p,, a vector which is perpendicular to the plane
formed by the layer normal and the molecular direction
(see Fig. 1).

The free energy of this phase in the presence of the
electric field is written as [4]

_ ko [dg , |’
F f dx 2 dx +q, ]

£,6°
EZ%in’%¢—p,0F cos¢
T

We adopt the usual convention that in a right-handed
coordinate system gy, =27/T >0 is a right-handed helix,
where T is the pitch of the helix, €, is the dielectric an-
isotropy, and K =K, =K, =K3;, where the K ;; are the
elastic moduli (the one-constant assumption). 6 is the
Sm-C* tilt angle indicated in Fig. 1. 6=0 for Sm-4
phases; c is the ¢ director, which is the projection of the
molecular director on the x-y plane; p,(lc) is the electric
polarization vector and p, is its magnitude;
p, =(cos¢(z),sing(z),0); and E=E(0,1,0).

The soliton equation is obtained by minimizing the
bracketed quantities of the free-energy expression and
equating the result to the viscous damping term
y6%3¢ /3t:

32 £,6°
k2% 42
ox T

E2c0s¢sin¢—epsEsin¢=yel%?. (1)

Extensive numerical solutions for this equation have been
reported [14].

In order to obtain a ferroelectric liquid phase, the mol-
ecules should be chiral with a transverse dipole moment
[15]. Note that it is not possible to superimpose the mol-
ecule on its mirror image and that cholesteric and
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smectic- A phases cannot support this type of transverse
ferroelectricity.

There is, however, another type of ferroelectric phase,
e.g., the longitudinal type. This is exemplified by bilayer
smectics. At a first glance, these smectics can belong to
either of the categories smectic 4 or smectic C and also
in the undulated or rippled phase. Cell membranes are
lipid bilayers of this type and exhibit the full gamut of
variations [12]: Sm-A4, Sm-C, rippled, etc. Lipid mole-
cules are typical amphiphiles with a large polar head

= |0
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Qu
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du /9z=0 for 2D cell membranes. In the absence of an
electric field, the total free energy for the 2D cell mem-
brane is given by [17]

2 2
F= fdxdydz{ Ky gx”z gy—’;
2
o | |Qu Ou
d ox ay ’

where o is the interfacial surface energy, d is the mem-
brane thickness, and K,; is the splay elastic constant.
The terms in parentheses take account of the splay bend-
ing of the layer and the surface energy due to the increase
in the interfacial area respectively.

Now we do the following: (a) carry out the z integra-
tion to give f dz=d and (b) consider an axisymmetric
membrane as is normally found in living systems.
Switching to cylindrical coordinates (r,a,x) (see Fig. 2),
we find, for smectic- 4 symmetry,

FIG. 2. Definition of the coordinate system used to describe
the smectic layer. The coordinate system is cylindrical, with the
x axis coinciding with the axis of the cylinder. The r direction
is everywhere parallel to the normal to the smectic layer. The
angle ¢ measures the rotation of the ¢ director with respect to
the x axis as shown in the right-hand part of the figure.

PRADIP DAS AND W. H. SCHWARZ 51

group and a nonpolar hydrocarbon chain. Such phases
have a spontaneous electric polarization which is along
the layer normal. Cell membranes are very thin
(~50-100 A thick and virtually 2D) and subject to
thermal fluctuations, described by long-wavelength dis-
placements u(x,y,z,t). The quantity u varies slowly and
its spatial derivatives, which express the layer deforma-
tions, are small ({u(x,y,z))=0 and |u(x,y,z)|<<1).
To second order, the components or direction cosines of
the layer normal n are given by [16]

F= frdrdadxi K“[[rar E;u
-
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Since the membrane is very thin (~75 A), we take
ou /dr=0. This is equivalent to the assumption that
ou /9z =0 in Cartesian coordinates, as already noted [17].
Also, axisymmetry implies that du /80a=0. Thus we ob-
tain

F=m(R2—R} [

where R, and R; are the outer and inner radii, respective-
ly. This is now a 1D problem. Referring to Fig. 3 we
write

(2)

2
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dx
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p dx , (3)
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FIG. 3. Splay wave in a 1D membrane. 6, is the
equilibrium-tilt angle of the local molecular director with
respect to the layer normal, i.e., the r direction. 8,,, is the max-
imum tilt at the peak of the splay wave.
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n,= —g—;=sin9(x,t), n,=0,

Using these results in Eq. (3), one obtains

a0 |’ o*
P ] ] .6

n,=cosf(x,t) . 4)

F=nRK, [dx| |22 | +32 .

ax Kb

where the approximations [18]

2 4
cos29~l——(29) +—(20)

sinf~0, Y 4l

have been used. Further,
R2—R}?=(R,+R;)R,—R;)=2Rd ,
where R is the mean radius. Also,
K, =K, d .

K,, known as the bending constant, determines the am-
plitude of thermal fluctuations of the membrane [17].
Consequently, observation of the latter gives a method of
determining K,. Experimentally, Brochard and Lennon
[19] found K, ~(1-2)X 10" J. From the elastic theory
of liquid crystals [20], we know that K, the splay elastic
constant,°z6>< 1077 dyn. Also, the membrane thickness
d~75 A. Hence K, (calculated) =~4.5X107"
ergs=4.5X107%° J. The agreement seems rather good.
Equations (2)—(5) strictly hold for a bilayer membrane
having a smectic- 4 symmetry.

For smectic-C symmetry, we need to start from the
form for the Sm-C elastic energy density [21]

2 2 2

— Lo |98 | | (32| | 1, (3, %
F 2K oz oz +2K 8x+ay
2
BT LS
2 ay ax
95, 95; | |96 96,
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where the two-component, tilt-vector order parameter
§=(£1,€,) is given by
£,=n,n,=sin0 cosb cos¢ , -
7
&,=n,n,=sin0 cosf sing
and K° K’, K", and K'" are the Sm-C elastic moduli
[21]. We assume 6 to be small, so that

§i=0cosp=n,, &,~0Osing=n, .
Thus
9 on 2 1 on on, |’
1 0 nx y ’ x Yy
"= e —_ +—K'|—+—=
F 2 K oz 0z 2 ox ay
1 on, on,
+=K" |———
2 dy ax
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"e Yy _ X x Y
K I"* 2 oz ||y ox

Ignoring the z dependence of 6 and ¢, which is justifiable
because of the thinness of the layer, and using the one-
constant approximation (K'=K"'=K), we obtain

F'=1K[(V0)?+6%V¢)*]+4o , (8)
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which also includes the interfacial energy term obtained
from Eq. (5).

The first two terms in Eq. (8) are considered to be the
fluctuation terms and the third one is the elastic term.
We need higher-order elastic terms in Eq. (8) to take into
account the fact that the smectic layer is stacked in the
form of a cylinder in the nerve axon. For a cylindrical
smectic- 4 thin layer, the elastic energy density contribu-
tion is K;; /2R 2, where K, is the splay elastic constant
and R is the mean radius of the cylindrical membrane.
The cylindrical smectic-C elastic layer energy, of which
the smectic- 4 result given above (K; /2R ?) is a special
case, is obtained from Fig. 2.

We write, following Carlsson, Stewart, and Leslie [22],
Wil = 3#( A psin*p+ A, cos*d—2 A, sin’p cos’p) ,
where w{fy)e, is the thin-layer energy, ¢ is the azimuthal
angle, and the A’s are elastic constants. Carlsson,
Stewart, and Leslie [22] expanded 4,, in powers of the
tilt angle 0, retaining only the first even power term in 6.
In order to examine the relevance of a higher-order ap-
proximation, we add the fourth-power terms

Ay =K+ 221‘92"’]321‘{’74 ,
A,=K, +A4,6*+B,6*, ©)
Ay =—K; +4,,6°+B,,6*.

Also, the following inequalities, which now include B

terms, must be valid [22]:
K, >0,
— — (10)
(Ad,+ A, +24,,)+(B,+B, +2B,;)6*>0 .

Only even powers of 0 are allowed because the energy is
unchanged on the inversion 6— —6. Now

Ky 1
Wik =5re * 257

{[( Zn"‘ Zn )sin4¢

+ (A, + A,y )cos*$16?
+[(B,+B,; )sin*¢
+(B,, +B,;)cos*$]0%} . (11)
Minimizing with respect to ¢, one finds
Osing cos¢{[( A, + A, )sin’p— (A, + 4, )cos’d]
+[(B,+ B, )sin’p—(B,, + B, )cos’$16°} =0 .

The form of the energy in Eq. (11) implies that the
stable configuration ¢, of the ¢ director will depend on
the signs of Z,-j and B;; and we need to distinguish three
cases: case 1,
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(A +4,,)+(B,+B,,6*>0,

¢0=0;7T
(45 +4,)+(B,y +B)60* <0,
case 2,
(A;,+4,)+(B,+B,,)6*<0,
=7 37
¢0 27 2

(4, +4,,)+(By+B,,)8*>0,
and case 3,

(A, + 41+ (B, +B,;)6*>0,

(4, +4,,)+(B,;+B,;)6*>0 .
Hence
(Ay + A4y +(By +By,)6?
(A1, +4,)+(By+B,)6*

tan’g,=

J
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A possible case 4 with
(d,+4,,)+(B;,+B,)6*<0,
(A, +A4,,)+(By+B,;)8?<0

is not allowed because of the second inequality in Eq.
(10).
Thus, for case 1

_Ku 1 (A, 4+ 7,6+ (B, + B, )6%]
wlayer_2R2 2R2[ 21 11 21 11 ’
for case 2
K L )6+ (B, +B, )6
Wiayer — 2R2 2R2[ 12 11 12 1)0°],

and for case 3

Kll 92 [(7{12+ le )+(B12 +B11 )92][( ZZ] + le )+(B21 +Bll )62]

wlayer=2R2 2R2

(A;,+ Ay +24,,)+(B,+B, +2B,,)6?

K 2 _ _
:‘2%4'2(1922{(A12+A21)(A21+A11)+92[(A12+A11)(321+Bn)+(A21+A11)(312+Bn)]}
B,,+B, +2B
O S S et i T U P NN
(A, + Ay +24,) A,+4, +24,,
K
~=L L 4024Bet+006%],
2R 2R?
where
A:(212+Z11)(221+Zu)
(A, + A, +24,,)
and
- _ - _ (Byy+By 2B WA, + A N Ay +Aqy)
(A1, +A,)(Byy +Byy)+(dy + Ay (Byy+By ) ———— 112 =2 Ul
Be (A, + A,y +24,,)

(A, +A4,+24,)

The experimental determination of the A4 elastic
coefficients has been discussed by Carlsson, Stewart, and
Leslie [23]. We will present a similar discussion of the B
constants in a later section.

III. POLARIZATION EFFECTS

Both the hydrophilic head groups and the hydrophobic
hydrocarbon chains of the lipid bilayers are highly aniso-
tropic structures. The mesomorphic states of the fluid
membrane [see Fig. 4(a)] are conveniently described by

the de Gennes stretching vector J [24]: J=Jp(J), with
Jo=J,+7J,, where J, and J, define the average orienta-
tions of the hydrocarbon chains and polar head groups,
respectively. Their absolute values measure the average
lengths of the hydrocarbon chains and the polar head
groups. p(J) represents the lateral density of monomeric
units in the lipid for the stretching vector J. A spontane-
ous electric polarization may be associated with the
stretching vector p={(X)J, where (X ) is a tensor aver-
aged over the fast rotational tumbling motion of the lipid
molecules. A residual electric polarization in the direc-
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tion of the molecular rotational axis is expected. Intilted  tudinal component p, along the layer normal. A phe-
phases, a component P, of the polarization parallel to the = nomenological expression for this net longitudinal polar-
plane of the membrane and in the direction of the tilt  ization p, of a curved bilayer membrane was proposed by
arises [see Figs. 4(a)-4(c)]. In addition, there is a longi-  Petrov [26]:

nllp,

\

" KXK?\KXKKKK‘R‘NKW
(a) BN NN

Meridian Section

s

Transverse Section

Electric field

FIG. 4. (a) A fluid lipid bilayer is an example of 2D head-to-tail correlated Sm-C* liquid crystal film, when the lipid molecules are
tilted as shown in the meridian section of the cell membrane. The tilt originates from the fact that the zwitteronic head groups occu-
py more space laterally than the hydrocarbon chains [25]. When the bilayer is shaped into a cylindrical object, the outer monolayer
has the lipids with the bulkier head groups. The transverse section shows the curvature-induced or flexoelectric origin of the net lon-
gitudinal electric polarization p,: the dipoles in the expanded outer monolayer increase, while those in the compressed inner mono-
layer decrease. As a result, the bilayer is polarized. The flexoelectric coefficient e is negative for this case. e can also be positive cor-
responding to the case in which the dipoles of the outer monolayer decrease, while those of the inner monolayer increase. Both have
been observed [27]. The origin of the lipid dipole is in the chemical structure of the head group, shown on the bottom right. The
head group conformational variations can cause lipid dipole moment changes, as noted above. The wiggly lines stand for fluid hydro-
carbon chains. (b) Spontaneous electric polarization in a smectic-C* layer. a is the layer normal vector and n is the molecular direc-
tor. The steric dipole vector p; is perpendicular to the noa plane. p is the electric dipole vector whose projection on the noa plane is
pu, i.e., p is the vector sum of p; and p,. The vector P, is perpendicular to p, in the layer plane. (c) 3D head-to-tail correlated Sm-C*
liquid crystal may possess global longitudinal p; and local transverse p, ferroelectricity. The phase has a helicoidal twist, each layer
having the same tilt angle 6. However, the c director rotates about the helix direction from layer to layer. The transverse electric po-
larization vector p,, which always remains perpendicular to the c director [cf. Figs. 1 and 4(a)] in the smectic layer plane, behave
similarly. The longitudinal polarization p, also rotates about the helix axis, always being inclined at an angle 6. Over macroscopic
dimensions, the phase possesses no net transverse electric polarization, but may possess a net longitudinal electric polarization. An
example may be myelin (see Sec. IX).
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1
“+_.
Ry R,

p,=e

where R and R, are the two principal radii of curvature
of the membrane. e is a flexoelectric coefficient, which
can be positive or negative [see Fig. 4(a)]. Petrov and
Pavloff [27] modeled the bilayer membrane by a bimorph
composed of two halves of piezoelectric material with op-
posite directions of the polar axes and, assuming no
trans-bi-layer exchange (which is normally a slow pro-

cess), derived an expression for the flexoelectric
coefficient e:
e=— |d1
dA

where p is the normal component of the lipid dipole mo-
ment, A°and A’ are the area per head group of the outer
and inner monolayers respectively, and A is the area per
head group of the midplane of the bilayer (nonstretched).
From the measurements of surface potential difference
across lipid monolayers spread on an air-water or a oil-
water interface, Petrov and Pavloff [27] estimated e
values for single-component lipids (lecithins).

Each monolayer half of the bilayer membrane is head-
to-tail correlated, i.e., all the dipolar head groups are on
one side and nonpolar hydrocarbon tails on the other.
Head groups face the polar aqueous environment.
Structural studies using deuterium NMR [28,29] indicate
that the hydrocarbon chain segmental order parameter is
constant across the bilayer. It is thus reasonable to use a
single tilt angle for the bilayer and assume the dipoles on
the opposing monolayer surfaces to be coupled. This im-
plies the existence of a net longitudinal polarization p, as
above, as well as a net transverse polarization p,. The
consequence of no transmembrane dipolar coupling is ex-
plained in Sec. IX. These features of the cell membrane,
e.g., the tilt angle, and the net longitudinal and transverse
polarizations have their counterpart in a 2D head-to-tail
correlated (i.e., like polar ends of the molecules on the
same side over a correlated region) Sm-C* film, con-
sidered in detail in the present work. The characteristics
of the corresponding 3D system are shown in Fig. 4(c).

The net transverse polarization p,, alluded to above,
results from the net alignment of steric dipoles in the ap-
posed monolayer halves. In a single-component lipid
monolayer built of optically active molecules, steric di-

2
pean [10 raran |k |42 | dier |48
B 20 pi
_— 04+———E
22 3d o T

or
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pole alignment would lead to the generation of a spon-
taneous electric polarization p, in the layer plane, but in
a direction perpendicular to P;, given by

Ps =H,(ni, )i, Xn),

where the phenomenological constant u, is expressed in
terms of model parameters as [21]

/.LPZ%[(ﬁZ/kBT)(S'p)A(DG/L )7 (2, +158a+8a,)] .

Here da=a,, —(a 4y )/2 is the anisotropy of molec-
ular polarlzablhty, a; a « T a,, is the transverse molec-
ular polarizability, and Sa 1 a —a,, is the anisotropy
of the transverse polarizability. Note that the polariza-
tion p, is in a direction perpendicular to the plane formed
by the layer normal vector i, and the director n, and de-
pends on the angle between the steric dipole vector S and
the electric dipole of the same molecule. The molecular
length and diameter are represented by L and D, respec-
tively; A reflects the chirality of the individual molecule i
and is given by A=(p;-a;)(p; Xm;-a;); p; is the electric
dipole vector of molecule i; a; is the long axis of the
whole molecule; m; is a vector joining the steric dipole
and the electric dipole; & is the fraction of nearest-
neighbor molecules located in the same smectic plane;
and p'is the number density of molecules. The magnitude
of the electric dipole vector p is different in the apposed
monolayer halves, causing the appearance of a net trans-
verse polarization p;,.

For a multicomponent mixture of chiral lipid mole-
cules

Bp = 2% XkMk >

where x; is the mole fraction of the jth component and
Mj is determined by the interaction between a molecule
of component j and a molecule of component k [21].

Not all lipid molecules need be chiral. Also, there are
other achiral molecules present in the cell membrane
which are not lipids. For a mixture of a chiral com-
ponent A4 with achiral molecules B, the constant u, is
given by

- 2
Mp =M gaX gt 14X 4%p -

Here pgp =0.
We now gather together all the elastic and the polar-
ization terms needed for the total free energy expression

1

2
+=Kq, [%—Co 4 |20

—_ 4 =

2
2
2 +22d9

2
ps
M, 0D+ .
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2 2
de d d
F= [dx {7RK, o ] +7RK,6* ’73 +7RK,C}+7KIn |1+ R=d/2 | 2 KCo
+ |7l |14 —2%— |+4nRo |0+ |7BIn |1+ —%— | —21Ro |6*
R—d/2 R—d/2 3
2 2
+2rRd | 25— Ep —p op, + 2 (13)
ZXI ! poEs 2Xs ’
-
and direction is negligible. Further, In(1+x)=x for x <<1,
do 2 7K which also has been used in Eq. (13), since d /R << 1.

F= f dx {wRK, |~ | +7RK,C3+ _Eb— —27K,C, Now, referring to Fig. 4(b), we find

py=psing, p;=p cost . (15)
Ad 4 Bd
+ |47Ro+T5% |0~ |—aRo— 2% |6 The angle £ [see Fig. 4(b)] is considered to be a material
R 3 R . .
constant and can be experimentally determined from
p? 2 measurements of both p; [27] and p, [15]. Minimizing
+27Rd E —Ep,—p,6p; + ) , (14)  the free energy with respect to p, i.e., 0F /dp =0,
1 s

where we have assumed, following Carlsson, Stewart, and p=(E sinf+6p,cos)Z(E) , (16)

Leslie [23], that ¢=¢(r,a), Hp is the piezoelectric

coefficient [21], x, is the transverse dielectric susceptibili- wh> ere

ty, x; is the longitudinal dielectric susceptibility, and C, -
is the spontaneous splay curvature which takes account ey | Sin%E coszg

. o =)= +
of the chemically distinct monolayer halves. As no X X

boundary condition is applied in the a direction, we fur-
ther assume that ¢(r,a)=¢(r). Since the membrane has Inserting the value of p from Eq. (16) into the energy ex-
very small radial extension, heterogeneity in ¢ along the »  pression gives

2 2

F= [dx {7RK, 49 | | 2Rk, —}{——c0 + f_gi+4er —7RAE(§)ulcos’E | 62
Sl R 94—21erE(§)uPE9sin§cos§—7TRdE2sin2(§)E(§)]. 47

Looking carefully at Eq. (17), we find a term proportional to E 8, which means that there is a direct coupling of the elec-
tric field to the mechanical deformation 6. Propagation of electric fields and electrically induced mechanical fields in
ferroelectric liquid crystals depends crucially on the presence of such coupling. If the molecules are achiral, i.e., the
piezoelectric coefficient is zero, this term is absent and there cannot be an electrical solitary wave propagation or elec-
trically induced mechanical field propagation, unless there is a dielectric mechanism connecting the electric and the
mechanical fields [9]. Electrically induced propagation of a mechanical field, e.g., the tilt angle 6, is discussed in Sec.
IV. For the propagation of an electrical wave form, there has to be a mechanism for the spatiotemporal variation of the
transmembrane electric field, which is coupled to the spatiotemporal variation of the mechanical field 6. Such a mecha-
nism is considered in Sec. V A.

A. The Landau—de Gennes approach

Equation (13) is analogous to the phenomenological Landau—de Gennes—type free energy used for ferroelectric smec-
tic systems. For Sm-C* liquid crystals, the free-energy density is [30,31]

2 2
P £21 g2 Yoe2 1 g2v2y 1 ag, a3, 352_ a8,
F'=ad(§1+&5)+b(E1+E5) +2K . + Bz +A §1——az §2——az
JE O 2
_I"'p(px§2_py§1)_l'l'f Px azl _i_py?z‘z~ —-PE+-£LX~ ’ (18)
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where the layer normal is assumed to be in the z direction
and the electric field is assumed in the x direction. The
fourth term is the Lifshitz invariant, p is the magnitude
of the electric polarization vector, d and b are the phe-
nomenological coefficients, and p, and p, are the
piezodlectric and flexoelectric coefficients, respectively.
The two-component tilt vector order parameter is ex-
pressed in terms of n or 6, and the azimuthal angle ¢ as
in Eq. (7). Out of the four terms in Eq. (6), the one that
appears in Eq. (18) is significant relative to the others
near the Sm-C*-Sm- 4 transition.

For the head-to-tail correlated Sm-C* liquid crystal,
we need to add contributions from the longitudinal elec-
tric polarization p;. Also, the electric field is in the z
direction. Because of the thinness of the membrane, the z
dependence of the order parameters is ignored. Borrow-
ing relevant terms from Eq. (6), we write the free-energy
density as

F'=d(&+E)+b(&+8)7
2

2
3 3 3 3
p g | 36 | 1., |9 35
2 ox dy 2 ay ox
2 2
ps pl
+ - +——
Ky (P&, —py61)+ w2 D)

Noting that

Px = —pssing, p,=pcosé ,

with p; and p, given by Eq. (15), and in view of the one-
constant approximation K =K'=K"', we derive

F'=3d0*+b6*+ LK[(VO)*+6% V)]
pS | p}

+L —Ep, .
2Xs 2X1 P

—Hpps 0+

This agrees very well with Eq. (13).

In invoking the phenomenological Landau—de Gennes
approach here, we have tried to find a rationale for use of
the B coefficients in Eq. (9). In the original format of
Carlsson, Stewart, and Leslie [22], the B coefficients were
missing and, as a result, a fourth-power term in 6 in the
free-energy expression did not appear.

B. Longitudinal ferroelectricity in polar smectic- 4 systems

The Landau-de Gennes approach has also been ap-
plied to polar systems which exhibit rich smectic-4 po-
lymorphism [32]. In nonpolar smectic-4 and polar
single-layer smectic-A, systems, only the mass density
wave p(z)=pgycos(k,z) exists. However, in general cases
of polar systems with high electric dipole moments, a col-
linear electric polarization wave ®(z)=®cos(k,z) can
coexist with the mass density modulation. Obviously, the
periods of the modulations (27 /k, for the density and
2w /k, for the polarization) are not commensurate. The
period 27 /k, is comparable with the molecular length /,,
while the period 27 /k, is determined by the dimension /,
of the antiparallel cluster of two molecules, with
1, <1, <2l,. Switching on the interaction (i.e., coupling
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terms in the free-energy expression) gives a variety of
commensurate and incommensurate structures (solitons)
as a result of phase transitions.

Essentially the same kind of free-energy expression as
Eq. (13) is expected, except that the tilt angle 0 for the
Sm-C* system needs to be replaced by the mass density
as the order parameter. Prost and Barois [32] have con-
sidered a generalized free energy with a variety of compli-
cated coupling schemes. We write the free-energy densi-
ty with a bilinear coupling term as
|, 0

+ %% +C'pp—Ep ,

_ 2 4
F,,=a,p*+bp"+ e

where Y is the dielectric susceptibility. Obviously, results
similar to those in Eq. (13) are obtained in this case also.

Prost and Barois [32] predicted that these polar
smectic- A systems could be longitudinal ferroelectric if
the ratio of the distance between the two neighboring sol-
itons over the bilayer spacing is a half-integer.

IV. SOLITON EQUATION

Liquid crystals are viscoelastic, so that the dynamical
deformations are damped and subject to increasing elastic
forces. The time dependence of the tilt angle 6 is then
determined by a simple balance between a friction term
v00/0t and the energy gain that provides the driving
force.

Thus, minimizing F, given by Eq. (17), with respect to
6 and equating the result to a viscous damping term
v00 /0t leads to the Euler-Lagrange equation

30 0 4

Y% ﬂRKbaxz (a6°—bO—CE) , (19)
where

_ Bd 4o

a=47R F—T ,

b=2qR | — %?—4—40 +dE(E)uleos’ |

and
¢=mRdu,=(§)sin§ cos§ .

Using dimensionless independent variables, we write Eq.
(19) in the form

2
%=§—X"2—+FE(9>, 20)

where
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The discriminant of the equation F5(0)=0 is

_ 1] c
2 o Y 3 0y=+{cos ! ;;}, 6,50,<06,4.
A= |4 | + |2 ={—£§ +‘—i <0.
2 3 2a 3a The potential function V;(6) is given as
Therefore, Vo(0)= le‘;_ LOZ— ’E_Iz:e . 23)
2p372 4 2a a
C=SCES—+—=c¢y . (22) . .
3V 3qa To conform to the nomenclature used in later sections

[e.g., Eq. (26) in Sec. V], we define u =(3a /b)'/?0 and
w=(3a/b3)""*¢E, where w is a constant (w= —0.5344
for the present case. Then

The real roots are
0,=V'b/a cos(6y+2w/3),

6,=V'b/a cos(6y+4w/3), V,(u)=
0;=V'b/a cosby ,

1
3

bl Lyes Loy,

E

Figure 5(a) shows V,(u) versus u variation. However,

where for the rest of the present section, we continue to work
-3
1010 . . . . . , 3 . v v
(a) . (b)
8l 1 , L Soliton C
T=0 u,=1.3444
6F _
1
41 4
>
L o
of 4 -——-’
ot g -
u = 1.9545
21 - R N R e R
R 3 2 1 0 1 2 3 4 _3 ‘ ‘ , .
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u X
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FIG. 5. (a) Graph of the potential function given by Eq. (23) with a=1.291, »=0.1, and w = —0.534406. (b)-(d) A boundary
value problem for Eq. (20) with ¢ =1.291, 5=0.1, and w= —0.534406. The resting solutions are u,=(3a/b)!/?6,= —1.9545,
u,=(3a/b)""?0,=0.610106, and u;=(3a/b)'?6,;=1.344441. y=(b/a)'/>X. On the line T=0, u =u,, where du /3T =0. On the
line y=0,u=F(T)=uy+H[1—cos(2nT /T,)] for 0< T < Ty and u =u, for T=T,. (b) Soliton C, u,=1.3444 and H <0; (c) soliton
A, uy=0.610106 and H <0; (d) soliton B, u,=0.610106 and H >0. The time increment between successive curves is 0.5 for all
three cases.
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with 6 and E. Using Eq. (21) in Eq. (20) results in the
standard 6*-soliton equation [33]. In the absence of an
electric field (E =0), we obtain

b

V0(9)=—E;

2, 1
6°+ 2 6* .
The extrema occur at ==(b/a)'/? and V,(0) is a sym-
metric “double-well” potential. We will show that a par-
ticular soliton solution is precluded for this case.

When the electric field is applied such that its magni-
tude is lower than a cutoff value E;, an asymmetric
profile is obtained [see Fig. 5(a)]. For Eq. (20) to have a
soliton solution, the potential V;(6) [Eq. (23)] must have
two minima and one maximum (or one minimum and an
inflection point), i.e.,

that is,

5 p32
== 2 24
¢ V3 12 (24)

which agrees perfectly with Eq. (22).

The range of stability of the soliton can be obtained
from Egs. (22) and (24). In the following, we present the
possible soliton solutions to Eq. (20). There are three
kinds of solitons [33]. Fronts propagating from ‘‘stable”
state 0, to stable state 6; are indicated in Fig. 5(b) as soli-
ton C and correspond to a ball rolling from the right-
hand minimum to the left-hand minimum in Fig. 5(a).
Fronts propagating from stable state 6; to ‘‘unstable”

Vg 3%V state 0, are represented by soliton 4 and correspond to a
30 |g=p. 0 362 |e-k, ball rolling from the maximum to the left-hand minimum
0 ° [see Figs. 5(a) and 5(c)]. Soliton B stands for fronts prop-
Now agating from stable state 65 to unstable state 6, and cor-
responds to a ball rolling from the maximum to the
0> — 2‘9‘ _ S 0 right-hand minimum in Fig. 5(a). It has a shape opposite
"a' a that of solitons 4 and C [see Figs. 5(a) and 5(d)].
and There are three possible solitons: A4, B, and C. Only
soliton C requires an electric field and the form of the
36?’—b/a=0, solution is given as
b 172 b 172
0= 2 l [cos@y—cos(8,+2m/3)]{1 —tanh[ W5 (X —X,—C.T)1} + [; cos(6y,+2m/3)
3b 172 172
= ‘—a—— sin(6y+m/3){1—tanh[ Wi {X —X,—CT)]}+ | = | cos(8y+2m/3),
[
where and in dimensional units
172 -1 172
_ b 7TRK,b
Wc=\/2l " ] [COSOO—-COS(90+21T/3)]] cc=% ———————zb cos(6y+1/3) .
172 172 -1 .. . .
2 b . The velocities and half-widths of solitons 4 and B are
13 2 sin(@o+m/3) recorded in Appendix A. Note that as the electric field
E —0, the wave speed c-—0, but not ¢, or cz. This
In dimensional units, means that solitons 4 and B can propagate without the
172 12 -1 electric field. However, as previously mentioned, the
We= —————ZFRKb — sin(0y+m/3) propagating soliton C requires an electric field. Some of
¢ 3a 0 the properties of this soliton are listed as [8] follows.
12 (i) There exists a unique solitary wave solution such
_ | 27RK, that
= csc(Gy+m/3) .
3b
Also, 0=0%(x—c*t)=06*(&),
172 lim 6*(£)=60,, lim 6*(§)=0,,
Ce=|=—| [cosBy+cos(8y+2m/3) fome §oe
0*'(£)<0.
—2cos(6y+417/3)]
12 (ii) There exists bistable behavior, i.e., 6; and 6, are
—a |0 stable and 6, unstable.
=3 |— os(6,+ /3 2
[ 2a cos(fotm/3) (i) c*, the critical speed (the speed of the asymptotic
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wave form), is completely determined by the function
F(0).

The relation
* 91
c §o<_>f93 Fg(6)d6s0
is valid. This is easy to see because
6
[, Fe0)do=vy(6,)—V,(6,) .
3
This integral is zero when E =0 and the behavior of the

wall is static. (See Sec. VIII.)
For ¢ /¢y << 1, to first order in ¢ /c,, we obtain

3vV3 c¢vVa
~—= RK )2 . 2
cc 232 b (mRK,) (25)
This is possible since for ¢=0, 6,=u/6 and

cos(m/3+6,)=0. It is again clear from Egs. (25), (A1),
and (A2) that solitons 4 and B can propagate without the
electric field, whereas soliton C cannot. At present we
are unable to calculate the speed of the soliton using Eq.
(25) and compare the result to observed values because
some of the physical quantities representing the mem-
brane have not yet been determined.

The solitary wave nature of the solutions is not des-
troyed even when the rotational Kkinetic energy,
+1(36 /3t )? is accounted for in Appendix B [34]. The re-
sults for this case are given there.

V. HODGKIN-HUXLEY EQUATIONS

The traveling electrically induced soliton is just a spe-
cial case of the Fitzhugh-Nagumo model, which consists
of the coupled set of equations [6,7]

p w1 du fu

oaxZ Co 87' 3 ’

3 (26)
co—a%—Fbow:ao—u ,

where aq, by, and ¢ are constants satisfying the relations
0<by<1,(cy)*>bgy, and 1—by/2<ay<2. The variables
u, w, and hanu /9x2in Eq. (26) correspond to the pair of
variables (V,, ,m), the pair of variables (h,n), and I,, in
Eq. (27), and x is the distance in the direction of the axon.
Here the variables and coefficients correspond to those
used by Nagumo, Arimoto, and Yoshizawa [7]. We will
obtain a similar equation; however, the variables and
coefficients will correspond to our soliton model.

The basic physical system being considered here is the
Bonhoeffer—van der Pol (BVP) model [6,7]. For the
“space clamp,” that is, in the case where the excitation of
the nerve axon is spatially uniform (synchronous action
of the “patches” in the membrane), the left-hand side of
the first of the two equations of Eq. (26) is replaced by
zero or a constant [35]. Figure 6(a) shows the trajectories
in the (u,w) plane of the BVP model in the space-clamp
situation where the left-hand side of the first equation of
the coupled set is zero.

This coupled set of partial differential equations have
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been shown to have the same kind of propagating soliton
solution as the Hodgkin-Huxley (HH) set of partial
differential equations [1]. The complete set of equations
is reproduced in Appendix C. Here we give the equation
partitioning the total transmembrane current into a capa-
city current and ionic currents due to the movement of
sodium, potassium, and other ions [1]:

dv,,
Im =Cm7+§Nam3h(Vm _ENa)

+ggn*V,,—Ex)+g.(V,,—E;) . 27)

0.3

0.2+

0o 80 v

FIG. 6. (a) Phase plane and physiological state diagram of
the BVP model [Eq. (26)]: a,=1.291, b,=0.1, and c,=4.5;
uy=1.34444 and wo=—0.534406 are the coordinates of the
resting point. A threshold phenomenon (TP) separatrix runs
along the black solid line dividing the phase plane into an active
regenerative region (to the left of the separatrix) from a refrac-
tory region (to the right of the separatrix). Excitation (i.e., ac-
tion potential) occurs whenever the phase point is displaced
across the separatrix from left to right. When the displacement
is not enough to take the phase point across the separatrix, the
action potential cannot result and such subthreshold stimuli de-
cay fast. (b) Hodgkin-Huxley (HH) physiological state diagram.
The BVP physiological state diagram has its counterpart in the
HH model, obtainable by projection from the four-dimensional
(V,m,n,h) phase space. The resting point is given by
(Vo,mq,wd )=(0,0.05293,—0.1342). The TP separatrix is
easily identifiable.
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The symbols are described in Appendix C; V,, is the
membrane potential and E, corresponds to the Nernst
potential of the a ionic species. Fitzhugh [6] argued that
the pair of variables (V,m) correspond to u*, which
reflects membrane excitability and changes relatively rap-
idly. Variables (h,n ) correspond to w*, which represents
accommodation and refractoriness and changes relatively
slowly. During the time course of the action potential,
the curves n and —h behave similarly [35]. Thus » and
—h can be replaced by their average w* =Hn—h).
Points from the (n,h ) plane can be projected perpendicu-
larly on to the w* axis, by projection along lines of con-
stant w*. Similarly, points of the (¥,m) plane can be
projected along lines of constant u*, where
u*=V —36m, according to Fitzhugh [6]. If one plots the
trajectories in the (1 *,w*) plane for the case I m =0, fair
agreement between the BVP and the HH models is ap-
parent [6]. In Fig. 6(b) we show the 3D (V,m,w?*) dia-
gram. It is not a phase-plane diagram, but a useful expo-
sitory device for comparing the HH and BVP models.
The qualitative similarity between Figs. 6(a) and 6(b) im-
plies that two-dimensional models such as the BVP equa-
tions can reproduce the same kind of excitable-oscillatory
behavior as the four-dimensional HH equations.

For uniform propagation, the space-time behavior of
V,.(x,t) must satisfy the traveling wave form, i.e.,

Vi (x,t)=V, (x—cst),

where ¢, is the velocity of propagation. Using the chain
rule twice gives

a*v,,

where R is the radius of the axon and R; is the specific
resistance of the axoplasm. Combining these equations,
we obtain

R 0%V, av,,
= = +gx(V, —
Re? oz o ExVmER)

s

+gNa(Vm —ENa)+gL(Vm —EL) . (28)

Hodgkin and Huxley solved this nonlinear equation nu-
merically [1]. Other computer techniques are now avail-
able [35]. In Appendix C we describe a numerical tech-
nique for solving this five-dimensional equation.

However, without solving Eq. (28) explicitly, one im-
portant result can be obtained, namely, any solution
V,.(x,t) will continue to be a solution if

RK,
2R;

172

_ 1 _
=const:—K70-, =

2R;c?

Since K, is an unknown constant, one pair of experimen-
tal values of ¢, and R is required. Thereafter, ¢, can be
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predicted for any other radius R and ¢, <R '/2. Experi-
mentally, these predictions are well confirmed [35].

A. Nernst-Planck equation

The excitable nerve membrane (~75 A thick) has a
resting membrane potential difference V,,—V, ~—0.1
V, which implies a strong transmembrane electric field of
about 10° V/cm. Ions such as sodium (Na™), potassium
(K*), and chloride (C17) exist on both the intracellular
and the extracellular sides, being subject to diffusional
and electric field forces. We write the membrane capaci-
ty current as the balance between the diffusion currents,
ion pump currents, and the current due to the electric
field (the Nernst-Planck equation) [35,36]:

dE _ _ dlj]l _FE ; p
Cd ar F?Dj dx R,T§Dj[]]+§lj,

where C is the membrane capacitance and
j=Na*,K*,Cl”. The first term on the right-hand side
gives the diffusion electric current driven by the
transmembrane concentration gradient of the jth species,
the second term represents the current due to the electric
field given by the transmembrane potential gradient, and
I? is the current due to the active j ion pumps. Under
the resting condition, the ion fluxes due to the first two
terms are opposite each other. D; is the diffusion
coefficient of the jth ionic species. F, R’, and T are the
Faraday constant, the gas constant, and the absolute tem-
perature, respectively. Now, in the second term of the
equation, we replace [j] by [j],,, the average concentra-
tion of jth ionic species in the membrane, given by

C,V,+C,V,

[Jj ]avzﬁj Vv
1 e

b

where V; and V, are the intracellular and extracellular
volumes and J3; is the partition coefficient which relates
the concentration of an ion species in the bulk to that in

6

/

TN,
44444444

TITINT
44444444

i

(a) (b)

FIG. 7. Schematic of how an ion channel in a nerve mem-
brane can be affected by the direction of lipid molecules. The
direction of the molecules can determine the geometrical
configuration of the channel and/or change the position of the
charged groups that affect the potential seen by a positive ion,
thereby affecting the mobility of a channel (or, in other words,
the permeability of the ion). (a) When the lipid molecules are
untilted, the ion channel allows no or partial ion transmission.
(b) When the lipid molecules are tilted by an appropriate
amount (9=9‘}), the ion channel is open.
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the membrane by [j];=p;C; and [j],=B;C,. The [j]’s
are concentrations in the membrane and the C’s are bulk
concentrations. The subscripts i and e stand for intra-
cellular and extracellular, respectively. The average ionic
concentrations are constants while the intracellular and
extracellular ionic concentrations [j]; and [j], are vari-
able. Under the resting condition (E =E),

2E0

R'T

FD;
I]p: d A[] ]rest
hence A[j],.q the concentration difference of the j ionic
species on the two sides of the membrane, can be found.
The quantity d, as in Sec. II, is the membrane thickness.
In our Sm-C* model of the cell membrane, the concen-
tration gradient of each ionic species across the mem-
brane is assumed to be tilt-angle dependent. This is con-
sistent with Fig. 7 and the speculation of Hodgkin and
Huxley, which is stated in the opening sentence of the
present work. The ion channel for species j is completely
open at 9=9‘} (j=Na™,K™*,Cl™) wiping out the concen-
tration gradient of the species between the intracellular
and the extracellular regions. Thus

w7 Dilila 5

Ul—LiL=fO)=r@)+0-60)f"(6D)+ - -

=(6—69)1'(69)

neglecting higher-order terms in the Taylor expansion of
fe). f ’(6?) is determined from the fact that the concen-
tration difference on the left-hand side corresponds to

that for the resting condition for 6= 6%, yielding
Al
f’(9?)= [] ]re(s)t .

Alj ]est is determined by the transport rate and density of
ion pumps. Thus we write

Cdd_E ggpjf'(og?xe—e?)—’:]fqu[J]av
+£ ZD'A[j]rest—*__z_'Eg- 2Djljla
d <" R'T 5
or
dE | _F’E

dt ' R'TdC %:Df[’]“

, Fo
S D065 =~

= 3 ijf'(e")

2

ED AljJrest + ED Gl - @29

Cd 2 R’ TCd

The movement of 6 towards 0? implies passive transmem-
brane transport of the ion species j. Active transmem-
brane transport is initiated by ion pumps, which operate
to restore the electrochemical gradient of ion species j,
and means the movement of 6 away from 93-) (i.e., in the
reverse direction).

B. The soliton model for the Fitzhugh-Nagumo equations

Equations (19) and (29) have exactly the same form as
the Fitzhugh-Nagumo equations (26) under the following
changes of variables:

1/2
:..__.—t = _31 0
(,},/36)1/2’ b ’
bF?
bOE%ZD'[j]aV’
BeR'TdC <
e Y3t _"RK, b
p372 > 70 p 0 ‘/%;,73 ’
3 172 F
— a ’
Cdz ZD A[] ]rest
2
3Dl
R'TCd JH ey
where
— F ’
B=—Cr 3 D,f(6)
j

Combining the two equations of the FN set, thus elim-
inating E, we obtain

d%u d%u
cohoa ™ 2+boh0a >
2 b
9u co 1 ~0 2 %
ar? c? or
by
+(1—bylu+— 3 U 3—a, . (30)

The behavior of an imparted impulse as it approaches the

asymptotic soliton shape is described by a boundary-

value problem using Eq. (30) and is shown in Fig. 8.
Using the dimensionless scaled variables

'= d z=2a (ao—u)
X = N = ,
\/Coho ° a}—1
) (31)
=colai—1), e=2"_ " o=p 1)
#—Co(ao ), E= 4a(2) > = o(ao ’
we obtain
3’z by 3%
drdx'? ¢ Ox'?
9°z 2 by | 3z
=2z - <L +1+a
61'2+ pu(l—z+ez?)+ CO]BT ( )z
Lozt Leasit by |2+ |
2 3 0 3¢

For simplicity, Nagumo, Arimoto, and Yoshizawa [7] set
bo = 0-
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FIG. 8. A boundary-value problem for Eq. (30) with £ =3.0, and €=0.1 and 2=0.067 (u,= 1.34444an wy=—0.5344). On the
line 7=0, u =u,, where du /07=0. On the line x =0, u =F(7)=uy+H(1—cos2w7/7y) for 7o=7>0and u =u, for 7= 7,. (a) A sig-
nal above the threshold value and below the asymptotic value is amplified during transmission. Graph of u versus 7. (b) A signal
above the threshold value and below the asymptotic value is amplified during transmission. Graph of w versus 7. (c) A signal above
the asymptotic value is attenuated during transmission. Graph of u versus 7. (d) A signal above the asymptotic value is attenuated
during transmission. Graph of w versus 7. (e) A signal below the threshold value is eliminated during transmission. Graph of u
versus 7. (f) A signal below the threshold value is eliminated during transmission. Graph of w versus 7. (g) The u-asymptotic wave
form versus x corresponding to (c). (h) The w-asymptotic wave form versus x corresponding to (d). (i) For b, =0.15 instead of 0.1, as
in (a)—(h), the soliton travels along x, but slowly diminishes. Graph of u versus 7. (j) For b,=0.15 instead of 0.1, as in (a)—(h), the
soliton travels along x, but slowly diminishes. Graph of w versus 7. (k) Action potential obtained from the HH equations (cf. Appen-
dix C for the values of the parameters and calculation). Although the resting potential is shown to be 0 mV in the figure, the current
convention is to take it as ~ —60 mV, so that the peak is at ~40 mV. The oscillating tail or the after potential is not shown.
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If the solution of this partial differential equation has a ,
wave form that is transmitted along a line without distor-

SOLITONS IN CELL MEMBRANES

tion and with a constant velocity (say c;), then the solu-
tion must be a function of t'=¢—x /c,, which is the re-

tarded time. In such a case,

where
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S cohoBe
thereby obtaining the ordinary differential equation
b b
%a)”'+ 02-—1 " — ,u(l—co-i-ea)z)—i--—2 @’
o CoOs €o
12 1 3
—(1+Q)o+—Qo*— -l
2 3
—(Q4by) | —2+== | =0, (32)
3e

where the prime refers to differentiation with respect to
7'. The velocity of the asymptotic wave form is

172
cohoBC
= T o(u,e,Q)
_ 1/4
=(RK,)'"? Cy—f o, (e, Q) , (33)

where o (u,€,Q) is obtained by solving Eq. (32) numeri-
cally.
For the resting solution of Eq. (32), ® =w,, we solve

~%nswg+%nmg—(1+mwo

1

J— I —_ :0
(Q+bg) | —2+

to obtain wy= —0.207316 7 for b;=0.1. In order to ob-
tain an appropriate characteristic equation, we let

O=wyt+o ,

thus obtaining

boB b
Ba'"+ | —— —1‘53"— p(1—wg+ewd) + —
Co Co
+u(—o+ed 4+ 2e0w@) | &'
+[Qwe— (1+Q)—Qewlla
+ QL —ewy)a’—1Qem =0, (34)

which has a resting solution @=0 and the characteristic
equation

by

Co

b
;L(l—a)0+8a)(2,)+;9— A
0

HM\)=BA+ [ -1 }xl—

+Qwy—(1+Q)—Qewi=0,

with B=1/02.

We used a;=1.291, by=0.1, and c¢,=4.5; this corre-
sponds to u=3.0, €=0.1, and 2=0.067. With b,=0,
this choice reduces to that of Nagumo, Arimoto, and
Yoshizawa [7]. The characteristic equation reduces to

H(AM)=BA+(LB—1)A*—3.657 0661 —1.081 178=0 .
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This equation has a positive real root since H(0)<O0,
H'(0)<0, and H(x)>0. The other two roots are real
negative if B <pBy(u)=4.213 for £ =3.0; otherwise they
are complex conjugates with real negative parts. Denot-
ing the positive root by A, (> 0),

HM)=(A—2) BA2+yk—%[Qwo—(l+Q)
0
—Qead] |

where

FIG. 9. (a) For B~0.6517617, it is expected that a stable
asymptotic wave form exists. For this case, u=3.0, and ¢=0.1
and 2=0.067. Labels on the graph are given as a, =0.65; b,
B=0.65156; ¢, B=0.65170; d, B=0.651755; ¢, B=0.6517615;
and f, =0.651762. Note that 5=0.6517617 (b,=0.1) for
our case is larger than the estimate of Nagumo et al.:
B=0.44488 (b,=0.0). (b) w-asymptotic wave form: a,
B=0.65; b, B=0.65156; ¢, B=0.65170; d, B=0.651755; e,
B=0.6517615; and f, B=0.651762.
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boB b
y=BAO+L—1=i 3(1—wy+0. 10d) + —
¢ Ao o

1

—E[Qw(,*(l—%ﬂ)'-ﬂsw%] .
Now, if EE)(‘:")——»O’~ when 77— — o, then &(7')

~ A exp(Ay7’), where A is an arbitrary constant. Hence

o' (7")~ ANgexp(AyT’), " (7')~ AAlexp(Ayr’) .

Thus we have performed numerical calculations for the
third-order differential equation [Eq. (34)] using the ini-
tial conditions

a(0)=A4, @'(0)=AeA, @"(0)=A%A ,

where A (>0) is the smallest step of . We are seeking
the value for B such that @&(7')—0 when 7'— o, as
shown in Fig. 9.

VI. DETERMINATION OF ANISOTROPIC
VISCOELASTIC CONSTANTS

Since the speed of the solitary wave depends on the an-
isotropic viscous and elastic constants of the material,
their experimental determination is discussed in the fol-
lowing sections.

A. Elastic constants

Obviously, we need to determine the A4 set of elastic
constants represented by (4,,+4;) and (4, +4 )
and the B set represented by (B, +B ;) and (B,, +B ;).
A Sm-C* liquid crystal has a helicoidal twist; however,
this can be avoided by using a racemic mixture of the ma-
terial in a wedge which forms part of the cylinder shown
in Fig. 2 such that the director n lies in the r-x plane,
with n making an angle 6 with r. One can induce a
Fréedericksz transition by applying a field along a having
a voltage difference U = U, given by [23]

z’3asoUc2="7'2§2_232[( —A_Zl + le )+ (B, +By, )92] ’

where ¢, is the dielectric anisotropy, €, is the dielectric
constant of a vacuum, and B, is given by [23]

B,=B,0".

52 corresponds to the energy associated with a c-
director, which is nonuniform with respect to the smectic
layers.

The wedge angle 8 can be varied, thus allowing the
determination of B, and [(A4,;+ 4,;)+ (B, +B,)6%].
One needs to vary 0 in order to obtain separate values for
(4,,+4,,) and (B, +B,;). This can be achieved by
applying a strong electric or magnetic field, preferably
the latter, along r (decreasing 0) or x (increasing ). The
electric field along a can be applied simultaneously to ob-
tain the Fréedericksz threshold U, for this new 6.
Changing 6 means a change of the layer spacing. The as-
sociated elastic energy is very high [see Eq. (7.68) in Ref.
[20]]; hence a strong field is required.

In order to obtain the other set of constants, e.g.,

(A;,+ Ay) and (B, +B;), one needs to prepare the
sample such that n is in the r-a plane and apply an elec-
tric field along x, i.e., E=Ex. The Fréedericksz thresh-
old is given by

£,60{d YE2=m*B,—2BX A ,+4,,),
where
(d)=(R+6R/2)

is the average sample thickness. 8R <<R and the sample
is filled between R and R +8R. In order to determine
separate values for (4,,+ A;;) and (B,,+B,,), one
again needs to vary 6 by applying a constant strong elec-
tric or magnetic field along a (increasing 0) or r (decreas-
ing 0).

B. Viscosity coefficient ¥

As we already noted, soliton C cannot propagate
without an electric field. However, under this condition,
solitons 4 and B can propagate with equal velocities
given by
172

33

2y

It is possible to use this expression for the determination
of y since the other quantities are measurable by other
techniques.

A propagating mechanical soliton can be generated in
a Sm-C film held between two plates by a technique such
as separating the upper plate into two unequal pieces or
using a very small exciter driven by electromagnetic tech-
niques. One may study such a film having a cylindrical
symmetry by using an observational technique similar to
that described by Zhu [11].

Cladis and van Saarloos [4] prepared a free-standing
circular smectic-C film and applied a circular shear by ro-
tating a needle located at the center of the film. With a
videocamera and a photodiode, they were able to photo-
graph the solitons in the radial direction and to measure
the time constant 7=2B /¥, where B is a Saupe coefficient
in the language of de Gennes [20] and y, is an anisotropic
viscosity coefficient different from y.

Hydrodynamic studies of Sm-C phases [37,38] are
difficult since both a density wave and orientational or-
dering (i.e., layer bending and c-director deformations)
are involved. Our ¥ and y,; of Cladis and Van Saarloos
[4] should be expressible in terms of 13 fundamental
viscosities [37].

Cc4=Cp 2

VII. POLYMORPHISM OF LIPID BILAYERS
AND MECHANICOELECTRIC
TRANSDUCTION IN MEMBRANES

In this section, we discuss the polymorphism exhibited
by lipid bilayers. Our nomenclature follows that used for
thermotropic liquid crystals, as pointed out in Sec. I.
Smectic phases 4 and C are observed above the chain
melting transition and are often referred to as fluid or
liquid crystalline phases [12,39,40]. At low temperature
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or high pressure, a fluid membrane undergoes transition
to a solidlike smectic-B phase [12,40], characteristic
of paraffin-hydrocarbon chains in the all-trans
configuration. The lipid molecules exhibit a long-range
order within the plane of the membrane. With respect to
the layer normal, the hydrocarbon chains may be tilted
(type B() or untilted (type B ,). The tilted configuration
may also exhibit an undulated structure (type B¢ ).

Some ion channels are known to be stretch activated
[41]. A mechanical deformation of the membrane con-
sists of a curvature elasticity term and a membrane ten-
sion term. Mechanicoelectric transduction has been
known to occur in some cells. For example, local defor-
mation of the lobster [42] and Myxicola [43] giant axons
produce a depolarization. The idea is that the curvature
strain and/or the membrane stretch affects the ion chan-
nels so as to affect the ion transmission. The resulting
depolarization of the membrane has an effect on the cur-
vature strain through a ferroelectric coupling. Lipid
molecules are chiral [44], i.e., have handedness; thus cir-
cumstantial evidence is strong that cell membranes have
ferroelectric properties. Cell membranes can have spon-
taneous electric polarization, i.e., ferroelectricity or
curvature-induced electric polarization (flexoelectricity).
The net polarization owes its origin to a flexoelectric
mechanism, as noted in Sec. III. For ferroelectricity, the
lipid molecules needs to be cooperatively tilted with
respect to the layer normal. Evidence for this comes
from dielectric relaxation experiments [45].

VIII. SOLITON LATTICE

In this section, our intention is to derive the static
profile of the tilt angle 6 versus the distance in the axial
direction x. The analysis shows that cell membranes
have a modulated structure, consistent with current mod-
els [12].

The stationary condition for F, given by Eq. (17), leads
to an Euler-Lagrange equation expressed as

d’e

——2—=a93——b9—c , (35)
dx
where
=4 [Bd_40
K, |R? 3 |’
2 Ad
b=-—— |dE(&)ulcos’e— | +4 ,
X, (§)uycos™E R? o
du,E
c= i E(&)sing cosé .

Equation (35) gives the static profile of the membrane
structure (6 versus x). First, we consider the simpler case
when ¢ =0, i.e., the electric field is absent.

The first integration of Eq. (35) gives

2
de | _
dx

Ta6'—bOHK, ,

where the integration constant K, is evaluated by using
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the boundary condition

dé
6= —=0.
00, dx O
Thus K, =b0}—a6(/2, yielding
6 dé
X —Xg= f 172 »
a

S(6'=68)—b(6>—6})

where x is the position of an arbitrary reference point
where =0 (see Fig. 10). Substituting 8/6,=sinu’ gives

arcsin6 /6, du’
k'(x —xy)= ,
0 fo (1—m%sin?u’)!/?
where
172
2b—a6?
k'= |— ,
2
”_ 2a63
m=———,
2b—a63
k'(x—xq)
arcsin—6-=u'=am —————o,m , 0<m?2<1,

%

where am(u,m ) is the Jacobi amplitude function. There-
fore the solution for 6 is given by [31,46,47]

k'(x—xg) k'(x—xg)

6 .
e ,m | |=sn ,m
0

’

where sn is the Jacobi sn function. The half period is
given by

0 5 10 15 20 25
_ _ k'(x=x,)

m
FIG. 10. Soliton lattice of the cell membrane. The competi-
tion between piezoelectricity and curvature elasticity produces a
tilt angle 6 modulation versus distance x along the axial direc-
tion. The graph shows 0/6y=sn[k’'(x —x,)/m,m] versus
X=k'(x —xq)/m (see Sec. VIII). The function am(¥,m ) is also
defined in Sec. VIII.
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X

il

2mK(m)
172 »
2—a? |
2

where K (m) is the complete elliptic integral of the first
kind. A graph showing the variation of 6/6, with
respect to x is given in Fig. 10. When the electric field is
on, the problem can be treated by a perturbation tech-
nique [47].

Let

6(x)=0,(x)—06(x) ,

where 6,,(x) is the exact solution for E=0 and —6'(x)
represents the contribution due to the electric field. To
first order in 6'(x) and E we have

2
‘292+ —3aG3sn’ km" +b |0 —c=0. (36)
X
Let
r— € ’
—;"}‘01
Then
d*e; . 3ac6} k'x
5 b0 b sn? m
—3a620)sn* | =X | =0,
420’ (37)
1 lb 3a3sn? x 1
3ac6? k'x
b m
- (2n —2)mx
ngleao,,cos X s
where
277_2 © q2p—n
Qo,n =222 2% —2n+1 -1
’ m°K*(m) ; (1—g? "7 ) (1—qg®7 ")
n—1
C(1—g® (=g ) |
_3ac62
e=—p— >

and the following Fourier expansion has been used:

’ ’

k'x

sn =sin |am

n—1/2

™
(2n—1) ¥

q .
mK(m) 211 =TS0

with
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g=exp ~%n%l , K'(m)=K(VI—m2)
The solution of Eq. (37) can be written as
6,=07+67",
where
‘220 +b0)= 'E,I €a,, ncos% (38)
and
d2 i ———+ b6}’ —3a6307'sn? k'x 3a630)'sn k'x ‘ .
m m
(39)
The solution of Eq. (38) is
€Qo,n cos (2n—2)mx
w b X 1
0'1’ =n§1 §0( 2n _2)7T : W1th g - —I;

X

while the second member of Eq. (39) can be developed to

give an equation for 6]’ formally identical to Eq. (37):

d261n ,

—+b6;" —3a636/"sn? k'x
dx

it (2n —2)wrx
=n§1 ealynCOST s

with (i =0)

a _3a i (ai,n-—p+1+ai,n+p—1)ai,p

i+1,n b =t §%(2p—2)2772

XZ

Iterating the process leads to an exact, although compli-
cated, solution of Eq. (36):

,_ ¢, € (2n —2)mx
0 —F+;i§0uncos~7— ,
where
ai,n
2
Eo(2n —2)mr

-3
_[ -

This result modifies, to some extent, the 6 versus x varia-
tion shown in Fig. 10, which is valid for the case in which
the electric field is absent. Even in the presence of the
electric field, the 0 versus x variation remains periodic
with the same period as that for E =0, although the dc
level is shifted. Depending on the sign of the field, one of
the two types of regions 6 or — 6 expands and the other
shrinks. This situation holds as long as the electric field
is not too high for the perturbation scheme to break
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down. For very high electric fields, the tilt angle modula-
tion along the axial direction x should vanish.

IX. CONCLUDING REMARKS

In the usual Sm-C* geometry considered by various
authors [4], the electric field is applied along the y direc-
tion in the layer plane (see Fig. 1), and if there is no
head-to-tail correlation of the molecules, the component
of the electric polarization normal to the transverse po-
larization direction is completely disordered. The
Lifshitz term and the piezoelectric and the flexoelectric
terms in the free energy ensure a helicoidal twist along
the z axis. The c director rotates as one travels along the
helix axis and so does the electric polarization vector,
which is perpendicular to the ¢ director in the layer
plane. The soliton equation in this case, given by Eq. (1),
shows the azimuthal angle ¢ as the independent variable.

The mechanism of propagation of the solitary wave,
also known as ferroelectric switching, depends on the fact
that those parts of the helix where the polarization is lo-
cally parallel to the field expand and the regions with po-
larization antiparallel to the electric field shrink. If the
field is suddenly reversed, as in the case of an ac or oscil-
lating electric field, the antiparallel regions become paral-
lel regions and a solitary wave propagates as the stable re-
gions grow at the expense of the unstable regions [4].

In a head-to-tail correlated Sm-C* liquid crystal, the
normal component of the electric dipole moment (see Fig.
4) is ordered leading to a longitudinal polarization p,,
which is available for coupling to an electric field existing
across the 2D liquid crystal film, e.g., a cell membrane.
This electric dipole polarization is in addition to the
alignment of transverse steric dipoles characteristic of
chiral molecules. The soliton equation for this case,
given by Eq. (19), shows the tilt angle 6 as the indepen-
dent variable.

Tilt angle is the “hard” variable; its fluctuation range is
small relative to the azimuthal angle. The balance be-
tween the curvature elastic energy and the piezoelectric
energy produces a modulated structure, which spans the
entire membrane space. These modulations consist of
juxtaposed regions of opposite tilt orientations. Such a
portrayal of the cell membrane is consistent with the
current models [12]. The 6 and —0 tilt membrane re-
gions are associated with opposite signs of the longitudi-
nal polarization p, and the steric dipole polarization p;,.

The excitable membrane has mainly three types of
ions, e.g., K*, CI™, and Na™, on both the intracellular
and the extracellular sides. Chloride ion movement is not
considered to be relevant to membrane excitability [35].
The nerve membrane has two steady states. One of these
is called the resting state whose potential is governed by
the potassium Nernst potential. Under the resting condi-
tion, potassium permeability is large and the sodium per-
meability is very small: Pg:Py,=1:0.04 [35]. The rest-
ing membrane potential is given by

_RT, [K"]
F UK,

Ex

This value is about —60 mV. A mechanical or electrical
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perturbation changes the tilt angle 0, thus increasing the
sodium permeability. The membrane potential increases,
becomes zero, and then rises to +40 mV, which is about
the sodium Nernst potential. This is the other steady
state:

RrT, [Na™],
Ey,=— , Pg:P 1:10
Na F [Na+] K% Na
(see [35])). The return to the resting state is achieved by

potassium efflux from the intracellular to the extracellu-
lar region, together with active transport initiated by
pumps. These ion pumps restore the transmembrane
electrochemical gradient, the energy being derived from
metabolism.

If the electric field E changes sign as, for example, hap-
pens in nerve membranes [see Fig. 11(a)], the tilt angle 6
switches to —6. This implies the propagation of a soli-
tary wave by ferroelectric switching since there are juxta-
posed membrane regions with the tilt angles 6 and —6
[see Fig. 11(b)], which are associated with opposite signs
of longitudinal polarization (p,). If there is no
transmembrane dipolar coupling, each monolayer half
would have to support a polarization modulation along
the axial direction in order that a solitary electrical wave
form may propagate. This is not an energetically feasible
situation since, in order to have opposite polarization for
part of the axial distance, the nonpolar tails would have
to face the polar aqueous environment. Thus our equa-
tions of motion would be invalid if there is no transmem-
brane dipolar coupling.

The form for our w or E soliton [see Fig. 8(d)] matches
quite well the triangular action potential, which shows
fast upstroke and much slower recovery [1]. The
Fitzhugh-Nagumo equations interpret u as the membrane
potential and as such simulate the threshold behavior of
the nerve membrane, but cannot reproduce its recovery
properties. The FN equations were derived by reducing
the four-dimensional Hodgkin-Huxley equations to the
two-dimensional V-m system, where the 4 and n process-
es have been characterized as slow and given their
steady-state values. In our model, the mechanical vari-
able 0 and the transmembrane electric field E appear as
the fast and slow variables, respectively. It is conceptual-
ly possible to have a cell membrane working on this prin-
ciple. A cell membrane of this type would show sensitivi-
ty towards mechanical stretch and hence can be called a
stretch-activated membrane. On the other hand, squid-
axon-type cell membranes show sensitivity towards elec-
trical stimulus, as explained in the introductory remarks.
Thus, starting from different physical assumptions, our
work shows that a two-dimensional model is capable of
exhibiting the same kind of excitable-oscillatory behavior
as well as propagating solitary-wave-like behavior as the
4D HH model.

The Hodgkin-Huxley model details the electrophysiol-
ogy of the nerve membrane of the squid axon. There are
misgivings regarding the universal applicability of the
HH model since the presence of cell membranes in other
species which may not obey the HH model cannot be
ruled out. At the present time, no other detailed work in
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the same spirit as that of Hodgkin and Huxley is avail-
able, and we speculate that there may be differences in
the electrophysiology of stretch-activated membranes re-
ferred to in Sec. VII and other membranes of the squid-
axon-type studied by Hodgkin and Huxley. Stretch-
activated membranes are those where mechanical defor-
mation affects ion transmission, thus causing membrane
depolarization. Our model may be more readily applica-
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FIG. 11. (a) u and w solitons versus 7. a,=1.291, b,=0.1,
¢0=9/2, and hy=1/cy. (b) Schematic showing which lipid
molecular reorientations in a cell membrane constitute the soli-
tary wave form displayed above the membrane. The arrow at
the top left shows the location where the membrane is imparted
a stimulus which, as function of time, approaches the asymptot-
ic soliton shape [Fig. 8(g)]. The solitary wave shown here corre-
sponds to a profile of the molecular tilt angle 6 versus the dis-
tance in the axial direction x for a long enough time. The
dashed line stands for 6=0. E is the magnitude of the electric
field whose sign is indicated by the trans-bi-layer arrow.
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ble to this stretch-activated variety. However, the form
for the action potential in both cases appear similar (cf.
Figs. 8 and 9), which, we believe, is due to the presence
(in all cell membranes) of a strong electromechanical cou-
pling, the nature of which we have attempted to reveal in
the present work through a ferroelectric liquid crystal
model, together with a mechanism of transmembrane po-
tential variation.

Another important point is the effect of the parameter
b, in Eq. (30). Solitons for b;=0 and 0.1 have almost the
same width and amplitude, but solitons do not exist for
by=0.15. Since b, depends upon electrical and mechani-
cal parameters, it is conceptually possible to test this pre-
diction experimentally.

Another kind of nerve propagation which should be
mentioned in this context is myelinated nerve conduc-
tion. The myelin sheath consists of about 100 stacked
cell membranes with no imbedded proteins. Because of
the thick lipid coating and the absence of transport pro-
teins, no ion transmission can occur and the transmem-
brane electric field remains static and cannot be oscillato-
ry. The propagating action potential does not have the
benefit of regeneration while in the myelin sheath and
gets considerably distorted in shape and size as it emerges
at the node of Ranvier where regeneration occurs. The
regenerated action potential then resumes its journey
through the next myelin sheath [35].

Because of the radial extension of the system, the static
and dynamical equations are more complicated, since in
addition to the cylindrical axis, and radial coordinate is
needed. The saltatory myelinated conduction and the
solitary-wave-like unmyelinated conduction compliment
each other in significant ways, so that important insight
into cellular processes can be obtained from their studies.

We call our model “molecular” because the elastic [48]
and viscometric constants [49] are expressible in terms of
molecular parameters such as length, diameter, volume
fraction of the lipid rods, and the relevant order parame-
ter; the piezoelectric coefficient (see Sec. III) is expressible
in terms of molecular parameters; the membrane capaci-
tance can be related to its dielectric constant for which
molecular theories exist [50]. We have attempted in this
work to construct a model of the nerve membrane from
which, by the use of physical laws, the mechanical, chem-
ical, and electrical properties of the membrane can be de-
rived. To our knowledge, advances in the area of nerve
excitability, apart from the seminal experimental work of
Hodgkin and Huxley, has so far been restricted to the de-
velopment of purely mathematical models such as those
of Fitzhugh and Nagumo and Hodgkin and Huxley. The
mathematical theory of nerve conduction was mostly
developed several decades ago [1,6,7]. It is conceptually
useful to construct different mathematical models which
emphasize one or another set of properties and omit oth-
ers. Clearly, the next step in the development is to com-
bine both physical and mathematical descriptions to base
the model on the laws of physics and chemistry. Such an
attempt has been made in this work, and hopefully better
insight will be forthcoming in the future in this (.e.,
solitary-wave-like) and other (i.e., periodic train of waves)
aspects of nerve conduction.
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172
GA:

Q |o

172
= lia’l] sin(0,+2m/3){1—tanh[ W; (X —X,—C ,T)]} + [i’—

where the width of the soliton wave is given by
172 1/2

sin(6y+2m/3)

-1
b

WA=

3

In dimensional units,

ri 121 (5 172 -1
w,= | T=> H—] sin(8,+27/3)
a a
J
172 12
cq= TRK 3a_\b cos | > —,
4 a yV2 |a 3 0

[cosBy—cos(0y+ 47)]{1—tanh[ W (X —
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APPENDIX A

Equation (20) has three solutions: solitons A4, B, and
C. The velocity and half-width of soliton C have been
recorded in Sec. IV, while those of solitons 4 and B are
given below.

For soliton A4

172
Xo—C,T)l}+ |— cos(6y+4m/3)
172
cos(6y+41/3) ,
[
The wave speed is
S 12
4 2a cos |3 6,

In dimensional units,

(A1)

For ¢=0, 8,=m/6 and cos(7w/3—0,)=V 3/2. Thus Taylor expanding near 6,=/6 and retaining terms to first order

in ¢ /c gives

7TbRKb
2

V72
2y

ca= 1=

172
[ cal”?

—_—

For soliton B

172
BB =

172
= [3‘1—”] sinfy{ 1 —tanh[ Wz (X —X,—CpT)]} +

where the dimensionless width is given by

172 172 —1
b
a

sinf,
In dimensional terms

172 b 172
H;] sinf,

The dimensionless wave speed is

WB =

3

-1
TRK

a

Wg =

[cos(By+41/3)—cos(8y+2m/3)]{1—tanh[ Wy (X —X,—CpT)]} +

b 172
" cos(6y+2m/3)

172
- cos(6y,+27/3) ,
[

172

Cp=3 2 cosdy

and in dimensional terms
~RK 172 2 s 172
cp=3 2a j}/‘ Z cosfy . (A2)

A Taylor expansion about 6,=1 /6 obtains
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33 | 7hRK, 172 cal”? where
cpg=— | ———— -1
2 2 2b 372 +25
4 a,(V,,)=0.1(V,, +25) |exp ’"10 -1 ,

APPENDIX B
We have added the term
2
do

—aR [dx 1 .

to the right-hand side of Eq. (17) to account for the rota-
tional kinetic energy, thus defining the negative Lagrang-
ian density

a0 _ 3% 3% 3
Y 5 7RK, 3 2'trRIat2 (a6°—bb—c) .

With rearrangement and redefining of variables, this
equation can be cast into the form

0, — 0, —A0,—(0—0,)(6—6,)(6—0,)=0 .

XX

This is the equation of a solitary wave [33] with the half-
width

a =—‘/1—§—(03—91)[1+(63+91—262)2/(2k2)]1/2

and velocity

c=—‘/1—_2—(03+61—202)[k2+%(03+91—292)]'/2 )

APPENDIX C

The Hodgkin-Huxley model [1] views the total
transmembrane current I,, as made up of a capacity
current CydV,, /dt and ionic currents due to the move-
ment of sodium (Na), potassium (K), and other ions (L ):

I, =Ic+Iy,TIx+I;

dv,
=C0—'Eti+gNa( Vin —ENa)

+gx(V, —Ex)+g,(V,,—EL),

where V,, is the voltage difference between the inside and
the outside of the membrane and the g’s are the conduc-
tances given by

gNa=§Nam3h’ gK=§Kn4’ gL:gL . (Cl)
Here m is the sodium activation (dimensionless), # is the
dimensionless sodium inactivation, and » is the dimen-
sionless potassium activation, each varying between 0 and
1. The behavior of these quantities is described by [1]

‘fi—':’+[a,,,(Vm)+Bm(Vm)]m=a,,,(V,,,) )

dh _

e V) +B V) h=ay(v,,) (C2)
%+[an(Vm)+Bn(Vm)]n —a,(V,),

B, (V,)=4exp(V, /18),
a,(V,,)=0.07 exp(V,, /20) ,

BV, )=1/{[(V,,+30)/10]—1} ,

v, +10

(C3)

a,(V, )=0.01(V,, +10) |exp

B,(V, )=0.125exp(V,, /80) ,

and V,, is the membrane voltage in millivolts.

Here C,=1 uf/cm? gy,=120, gx=36, g, =0.3
mQ~ 'em™?% Ey,=—115, Ex =12, E; = —10.5989 mV,
R =0.0238 cm, and R;=34.5 Q-cm. These values have
been used for computation of the phase-plane diagram
[Fig. 6(b)] and the action potential [see Fig. 8(k)] for the
HH equations.

Solution of Eq. (28) for the form of the HH action potential

The long-time solutions for Egs. (28) and (C2) are
120m2h,(V,+115)4+36n XV, —12)

+0.3(¥V,+10.5989)=0, (C4)
where
. a,,(V,)
e o (VOB (V)
h o= ah(Ve)
¢ ap(V)+B(V,)
a,(V,)
ne

RPALT XUAN

The a’s and B’s are given by Eq. (C3) with V,, =V, (the
resting value of the membrane potential). Equation (C4)
can be solved for the resting values V,, m,, n,, and h,.
The behavior near the resting point is described approxi-
mately by a linear differential equation

PV _2RCo a7 _ s D

BHH‘at_z - T"a_t =(gnam’h. +Exni+E IV,

where V,, =V +V,, Bun=1/c iy (cyy is the speed of the
Hodgkin-Huxley action potential), and

_ Enamoh Eny +8xn Ex +8LE;

0 — — —
gNameshe +gKn:+gL

Solving Eq. (C4) one obtains V,=0, m,=0.05293,
h,=0.59612, and n,=0.317677. The characteristic
equation is given by

Bupx?—2.899 15x —1.963461=0 .

One of the roots is positive; the other is negative. Denot-
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ing the positive root by x, it can be easily shown, as in
Sec. VB, that the initial conditions on V,, should be
V,.(0)=A and V,,(0)=x,A, where, as in Sec. VB, A is
the smallest step size. The calculated action potential is
shown in Fig. 8(k). These initial conditions together with
the equilibrium values for n, 4, and m given above obtain
the left-hand side of the action potential curve. In order
to get the right-hand side of the curve, we used the initial

conditions appropriate to the peak of the curve, namely,
V..(peak)=105 mV, m(peak)=0, n(peak)=0.3, and
h(peak)=0.675. Calculations were carried out for each
initial guess of dV /dt. Our calculated value for the wave
speed cyy =1.881264 53 m/s is in agreement with the re-
ported value of 1.88 m/s, obtained by a different numeri-
cal scheme [1]. dV/dt=—55.303386717 is the value
used for Fig. 8(k).
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